MAGLUMI FT4 (CLIA)

PRINCIPLE OF THE TEST

Use an anti-T4 monoclonal antibody to label ABEI, and use a purified T4 antigen to coat Nano Magnetic Microbeads. Sample, Calibrator, or Control. Buffer, mixed thoroughly with ABEI Label, and Nano Magnetic Microbeads and incubated at 37°C, then the Sample and Nano Magnetic Microbeads competitively binding the ABEI Label, forming an immuno-complex, after sediment in a magnetic field, decant the supernatant, then cycle washing for 1 time. Subsequently, the starter reagents are added and a flash chemiluminescent reaction is initiated. The light signal is measured by a photomultiplier as RLU within 3 seconds and is proportional to the concentration of FT4 present in samples.

SYMBOLS EXPLANATIONS

Authorized Representative in the European community
Manufacturer
Consult instructions for use
In vitro diagnostic medical device
Batch code
Catalogue number
Use by
Temperature limitation (store at 2-8 °C)
Sufficient for
Keep away from sunlight
Keep upright for storage

INTENDED USE

The kit has been designed for the quantitative determination of Free Thyroxine (FT4) in human serum. The method can be used for samples over the range of 1.0-120.0 pg/ml. The test has been performed on the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI (Including Maglumi 600, Maglumi 1000, Maglumi 1000 Plus, Maglumi 2000, Maglumi 2000 Plus, Maglumi 3000 and Maglumi 4000).

SUMMARY AND EXPLANATION OF THE TEST

The thyroid secretes thyroxine (T4) into the bloodstream, where over 99.9% of the hormones are bound to transport proteins. However, it is only the free T4 fraction which is physiologically active. FT4 induces metabolic stimulation and acts as a control feedback to the hypothalamic-pituitary-thyroid axis. Other than total T4, measurement of FT4 is independent of binding proteins (TBG, TBPA, albumin). Due to its higher sensitivity and specificity for thyroid dysfunction, FT4 should, therefore, always be determined in patients with binding protein anomalies.

Binding protein anomalies may be congenital, e.g. familial dysalbuminaemic hyperthyroxinaemia (FDH syndrome), prealbumin-associated hyperthyroxinaemia; congenital TBG deficiency, physiological, e.g. pregnancy, perinatal state, drug-related; e.g. contraceptives, salicylates, heparin. Due to severe underlying conditions (NTI = non-thyroidal illness); e.g. chronic renal insufficiency, myocardial infarction, acute hepatitis, hepatic cirrhosis, anoxemia nervea, severe infections, postoperative and posttraumatic states.

FT4 clinically distinguishes euthyroid hyperthyroxinaemias from hyperthyroidism and euthyroid hypothyroxinaemias from hypothyroidism.

KIT COMPONENTS

Material Supplies

<table>
<thead>
<tr>
<th>Reagent Integral for 100 determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano magnetic microbeads: TRIS buffer, 1.2% (W/V), 0.2%NaNO<sub>3</sub>, coated with purified T4 antigen</td>
</tr>
<tr>
<td>Calibrator Low: bovine serum, 0.2%NaNO<sub>3</sub></td>
</tr>
<tr>
<td>Calibrator High: bovine serum, 0.2%NaNO<sub>3</sub></td>
</tr>
<tr>
<td>Buffer: containing BSA, 0.2%NaNO<sub>3</sub></td>
</tr>
<tr>
<td>ABEI Label: anti-T4 monoclonal antibody labeled ABEI, containing BSA, 0.2%NaNO<sub>3</sub></td>
</tr>
</tbody>
</table>

All reagents are provided ready-to-use.
Preparation of the Reagent Integral

Before the sealing is removed, gentle and careful horizontal shaking of the Reagent Integral is essential (avoid foam formation!) Remove the sealing and turn the small wheel of the magnetic microbeads compartment to and fro, until the colour of the suspension has changed into brown. Place the Integral into the reagent area and let it stand there for 30 min. During this time, the magnetic microbeads are automatically agitated and completely resuspended. Do not interchange integral component from different reagents or lots!

Storage and Stability
- Sealed: Stored at 2-8°C until the expiry date.
- Opened: Stable for 4 weeks. To ensure the best kit performance, it is recommended to place opened kits in the refrigerator if it’s not going to be used on board during the next 12 hours.

CALIBRATION AND TRACEABILITY

1) Traceability
To perform an accurate calibration, we have provided the test calibrators check by ID- GC/MS (isotope dilution gas chromatography mass spectrometry) on various control materials.

2) 2-Point Recalibration
Via the measurement of calibrators, the predefined master curve is adjusted (recalibrated) to a new, instrument-specific measurement level with each calibration.

3) Frequency of Recalibration
- After each exchange of lots (Reagent Integral or Starter Reagents).
- Every week and/or each time a new Integral is used (recommendation).
- After each servicing of the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI.
- If controls are beyond the expected range.
- The room temperature has changed more than 5 °C (recommendation).

SPECIMEN COLLECTION AND PREPARATION
Sample material: serum
Collect 5.0ml venous blood into Blood Collection Tube. Standing at room temperature, centrifuging, separating serum part.

WARNING AND PRECAUTIONS FOR USERS
- For use in IN-VITRO diagnostic procedures only.
- Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Safety Precautions

CAUTION: This product requires the handling of human specimens.
- The calibrators in this kit are prepared from bovine serum products. However, because no test method can offer complete assurance that HIV, Hepatitis B Virus or other infectious agents are absent; these reagents should be considered a potential biohazard and handled with the same precautions as applied to any serum or plasma specimen.
- All samples, biological reagents and materials used in the assay must be considered potentially able to transmit infectious agents. They should therefore be disposed of in accordance with the prevailing regulations and guidelines of the agencies holding jurisdiction over the laboratory, and the regulations of each country. Disposable materials must be incinerated; liquid waste must be decontaminated with sodium hypochlorite at a final concentration of 5% for at least half an hour. Any materials to be reused must be autoclaved using an overkill approach. A minimum of one hour at 121°C is usually considered adequate, though the users must check the effectiveness of their decontamination cycle by initially validating it and routinely using biological indicators.
- It is recommended that all human sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens 13. Biosafety Level 214 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents.
- This product contains Sodium Azide; this material and its container must be disposed of in a safe way.
- Safety data sheets are available on request.

Handling Precautions

- Do not use reagent kits beyond the expiration date.
- Do not mix reagents from different reagent kits.
- Prior to loading the Reagent Kit on the system for the first time, the microbeads requires mixing to re-suspend microbeads that have settled during shipment.
- For microbeads mixing instructions; refer to the KIT COMPONENTS, Preparation of the Reagent Integral section of this package insert.
- To avoid contamination, wear clean gloves when operating with a reagent kit and sample.
- Over time, residual liquids may dry on the kit surface; please pay attention that the second thin film exists on the surface of the kit.
- For a detailed discussion of handling precautions during system operation, refer to the SNIBE service information.

TEST PROCEDURE

To ensure proper test performance, strictly adhere to the operating instructions of the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI. Each test parameter is identified via a RFID tag on the Reagent Integral. For further information please refer to the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI Operating Instructions.

40μl	Sample, calibrator
40μl	ABEI label
40μl	Buffer
20μl	Nano magnetic microbeads
15 min	Incubation
400μl	Cycle washing
3 s	Measurement

DILUTION

Sample dilution by analyzer is not available in this reagent kit. Samples with concentrations above the measuring range can be diluted manually. After manual dilution, multiply the result by the dilution factor. Please choose applicable diluents or ask SNIBE for advice before manual dilution must be processed.

QUALITY CONTROL

- Observe quality control guidelines for medical laboratories
- Use suitable controls for in-house quality control. Controls should be run at least once every 24 hours when the test is in use, once per reagent kit and after every calibration. The control intervals should be adapted to each laboratory’s individual requirements. Values obtained should fall within the defined ranges. Each laboratory should establish guidelines for corrective measures to be taken if values fall outside the range.

LIMITATIONS OF THE PROCEDURE

1) Limitations

Under euthyroid conditions, both T4 and binding protein levels are simultaneously decreased or elevated while free thyroxine is within the normal range. Hyperthyroidism, however, is always associated with decreased values of free thyroxine while the reverse is true for hyperthyroidism. In these conditions, binding protein anomalies may be caused either by shifts in the concentrations of TBG, TBPA and TBA or by alterations in the binding affinity of these proteins. Therefore, clinical findings should always take into consideration all physiological, pathological or drug-related alterations in binding conditions/capacities of such proteins.

Multiple medications can affect the combination of T4 and thyroid hormone carrier protein, or the metabolism transformation from T4 to T3, which caused the complication of diagnostic interpretation of FT4 results. If severe non thyroidal illness exists, it will be particularly difficult to evaluate the thyroid condition. Individual patients accompanied by primary or secondary hypothyroidism, so in such cases the TSH immunoassay is recommended to make definite diagnosis. On rare occasions, it could be a big change in albumin binding affinity, for example familial dysalbuminemic hyperthyroxinemia (FDH), thus direct assay FT4 would lead to the misleading results. In addition, circulating T4 autoantibodies and hormone-binding inhibitor might interfere with FT4 measurement. FT4 serum levels alone give no evidence of the presence or absence of thyroid disease. They must always be interpreted in context with the clinical picture and other diagnostic procedures.

2) Interfering Substances

No interference with test results is seen by concentrations of bilirubin<41mg/dl, haemoglobin<2000mg/dl or triglycerides<2000mg/dl.

3) HAMA

Patient samples containing human anti-mouse antibodies (HAMA) may give falsely elevated or decreased values. Although HAMA-neutralizing agents are added, extremely high HAMA serum concentrations may occasionally influence results.

RESULTS

1) Calculation of Results

- The analyzer automatically calculates the FT4 concentration in each sample by means of a calibration curve which is generated by a 2-point calibration master curve procedure. The results are expressed in pg/mL. For further information please refer to the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI Operating Instructions.
- Conversion factor: 1 pg/ml = 1.287 pmol/L
2) Interpretation of Results
 - Results of study in clinical centers with group of individuals. 95% of the results were 8.9-17.2 pg/ml.
 - Results may differ between laboratories due to variations in population and test method. If necessary, each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS

1) Precision
 Intra-assay coefficient of variation was evaluated on 3 different levels of control serum repeatedly measured 20 times in the same run, calculating the coefficient of variation.

<table>
<thead>
<tr>
<th>Control</th>
<th>Mean (pg/ml)</th>
<th>SD (pg/ml)</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>15.25</td>
<td>1.21</td>
<td>7.93%</td>
</tr>
<tr>
<td>Level 2</td>
<td>21.35</td>
<td>1.31</td>
<td>6.14%</td>
</tr>
<tr>
<td>Level 3</td>
<td>42.39</td>
<td>1.87</td>
<td>4.41%</td>
</tr>
</tbody>
</table>

Inter-assay coefficient of variation was evaluated on three batches of kits. Repeatedly measured 3 different levels of control serum 21 times, calculating the coefficient of variation.

<table>
<thead>
<tr>
<th>Control</th>
<th>Mean (pg/ml)</th>
<th>SD (pg/ml)</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>14.01</td>
<td>1.24</td>
<td>8.85%</td>
</tr>
<tr>
<td>Level 2</td>
<td>24.56</td>
<td>1.68</td>
<td>6.84%</td>
</tr>
<tr>
<td>Level 3</td>
<td>41.52</td>
<td>2.95</td>
<td>7.11%</td>
</tr>
</tbody>
</table>

2) Analytical Sensitivity
 The sensitivity is defined as the concentration of FT4 equivalent to the mean RLU of 20 replicates of the zero standard plus two standard deviations corresponding to the concentration from the standard curve. The sensitivity is typically less than 1.0 pg/ml.

3) Specificity
 The specificity of the FT4 assay system was assessed by measuring the apparent response of the assay to various potentially cross reactive analytes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration</th>
<th>Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>10 ng/ml</td>
<td>0.1%</td>
</tr>
<tr>
<td>rT3</td>
<td>10 ng/ml</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

4) Recovery
 Consider calibrator high of known concentration as a sample, dilute it by 1:2 ratio with diluents, and measure the diluted concentration for 10 times. Then calculate the recovery of measured concentration and expected concentration. The recovery should be within 90% - 110%.

<table>
<thead>
<tr>
<th>Expected</th>
<th>Measured</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.93 pg/ml</td>
<td>79.55 pg/ml</td>
<td>102%</td>
</tr>
</tbody>
</table>

5) Linearity
 Use FT4 calibrator to prepare the six-point standard curve, measuring all points’ RLU except point A, and then do four-parameter linear fitting in double logarithm coordinate, the absolute linear correlation coefficient (r) should be bigger than 0.9800.

<table>
<thead>
<tr>
<th>Calibrator Point</th>
<th>Concentration (pg/ml)</th>
<th>Absolute linear correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>r=0.9950</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

6) Method comparison
 A comparison of MAGLUMI FT4(y) with a commercially available FT4(x) using clinical samples gave the following correlations (pg/ml):
 Linear regression
 y=0.8818x-1.7333
 r=0.9808

 Number of samples measured: 100
 The sample concentrations were between 3.18-68.84 pg/ml

REFERENCES